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Abstract
The use of the matrix density formalism, and of a multiscale expansion,
allows the derivation of a macroscopic nonlinear evolution equation for a short
light pulse (a nonlinear Schrödinger equation), directly from the microscopic
quantum mechanics equations.

We consider the simple case of a monochromatic plane wave, interacting
with independent two-level atoms, to show that such a computation is possible.
For their linear part, the results agree with that of the linear dispersion theory,
but the obtained nonlinear coefficient differs appreciably from that derived from
the computation of the so-called nonlinear susceptibilities, except in one simple
particular situation.

PACS numbers: 4250R, 0340K

1. Introduction

Many experimental and theoretical works in nonlinear optics make use of the so-called
‘nonlinear susceptibilities’, that are mainly an expansion of a phenomenological response
function in a power series of the electric field. Although it has given a very useful theoretical
frame for the interpretation of many phenomena, and many quantitative measurements of the
nonlinear properties of optical materials, this approach is not completely satisfactory from
either the theoretical or the experimental viewpoints. Indeed, it is well known by researchers
that the experimental values of the susceptibilities depend strongly on the experimental
procedure, even if the theory states that they should not.

In other domains of nonlinear physics, such as hydrodynamics or the physics of waves in
ferromagnetic media, the use of such susceptibilities has been avoided, the equations giving
the evolution of a wavepacket are obtained directly from the basic equations of the Navier–
Stokes or Maxwell–Landau type. The traditional frame for studying a water wave is the
multiscale analysis, allowing the treatment of multi-dimensional problems, concerning not
only wavepackets [1], but also solitary waves [2]. A Hamiltonian approach has given good
results in the study of magnetostatic waves in magnetic films [3, 4]. Electromagnetic waves
in magnetic media have also been studied using multiscale analysis [5–7]. To my knowledge,
such an approach has never been attempted in nonlinear optics. The reason for this seems to
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stem from the great complexity of the basic equations in this case. Indeed, as can be seen from
the existing computations of the nonlinear susceptibilities [8, chapter 3], a quantum mechanical
treatment seems to be necessary, which implies technical difficulties.

We will see that the use of the density matrix formalism, and of multiscale analysis, allows
the direct derivation of a macroscopic nonlinear evolution equation for the light pulse, from a
microscopic quantum mechanical model. For the sake of simplicity, we restrict the problem to
the interaction between a plane wave and a range of independent identical two-level atoms. The
aim of the paper is to give a new derivation method. The results are compared to those derived
using nonlinear susceptibilities. We will conclude by discussing the possibility of applying
this method to more realistic physical situations, in order to get a more precise description of
the experimental features.

2. The Maxwell–Bloch equations

We consider an homogeneous medium, in which the dynamics of each atom is described by a
two-level Hamiltonian:

H0 = h̄

(
ωa 0
0 ωb

)
. (1)

The atomic dipolar electric momentum is described by the operator �µ, with

µs =
(

0 µs
µ̄s 0

)
(s = x, y, z). (2)

We denote the complex conjugate by an over bar, keeping the star for the Hermitian conjugate
(so that (aij )∗ = (āji) for any matrix (aij )), as per the current notation found in mathematical
papers. The electric field �E is governed by the Maxwell equations, that reduce to

�∇( �∇ · �E)−� �E = −1

c2
∂2
t (

�E + 4π �P) (3)

in the absence of magnetic effects. �P is the polarization density, c the velocity of light in a
vacuum. We denote by ∂t the derivative operator ∂

∂t
with regard to the time variable t , and �∇

is the three-dimensional gradient operator. The coupling between the atoms and the electric
field is taken into account by a coupling energy term in the total Hamiltonian H , that reads

H = H0 − �µ · �E (4)

and by the expression of �P :

�P = N tr(ρ �µ) (5)

where N is the number of atoms per volume unit. If ρ is the density matrix, the Schrödinger
equation takes the form

ih̄∂tρ = [H, ρ] . (6)

The set of equations (3)–(6) is sometimes called the Maxwell–Bloch equations, although this
name usually denotes a reduction of this set of equations (see [8, section 5.4]).

The electric field will describe some quasi-monochromatic plane wave, slowly modulated
along its propagation direction so that it yields a ‘temporal’ wavepacket, that propagates over
distances which are very large with respect to its length. It can thus be written

�E =
∑

n�1,p∈Z
εneipϕ �Ep

n (7)
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where the �Ep
n are functions of the slow variables{

τ = ε
(
t − z

V

)
ζ = ε2z

(8)

ε is a small perturbative parameter, V is some velocity to be determined, which is actually the
group velocity of the wave. ϕ is some fundamental phase ϕ = kz−ωt . Thus the propagation
direction is chosen to be the z-axis, and the problem is purely one dimensional.

We assume that the dominant term in (7) is

�E = ε
( �E1

1eiϕ + c.c.
)

(9)

(where c.c. denotes the complex conjugate), so that the incident wave contains only the
frequencyω/2π and its sidebands due to the finite pulse length. The scaling given by (7)–(9) is
the one that is commonly used for the derivation of the nonlinear Schrödinger (NLS) equation
in any frame [9, section 8.1]. The electric field is of order ε, thus ‘small’. When using
phenomenological response functions, it is rather difficult to give a reference point for this
smallness. From another viewpoint, the wave fields needed for nonlinear experiments are even
very large, at least with regard to the fields attainable without using laser sources. In the present
context, the field compares to the intra-atomic electric field, or more precisely, the electrostatic
energy of the atomic dipole in the field compares to the difference h̄$ = h̄(ωb −ωa) between
the energies of the atomic levels (we assume ωb > ωa). The zero order in the space scales
is that of the wavelength, which may seem strange for a theory written at the atomic scale
(less than a nanometre), even though it concerns optical wavelengths (about a micrometre).
But, considered from the energetic point of view, we must compare the energy h̄ω of a wave
photon to the energy difference between the atomic levels h̄$. It is well known that only the
transitions corresponding to frequencies of the same order of magnitude as the wave frequency
appreciably affect the wave propagation. The energy scale fixes the frequency scale, then the
timescale is that of the corresponding period, and the length scale can be deduced using the
value of the light velocity.

The polarization density �P and the density matrix ρ are expanded in the same way as (7),
except that ρ has a ε0 order term ρ0 that accounts for the initial state of the atoms. They are

initially assumed to all be in their fundamental state a, so that ρ0 =
(

1 0
0 0

)
. A population

inversion is prohibited by this choice, but could be taken into account through a convenient
modification of the ansatz. Recall that the density matrix accounts for the statistical distribution
of the physical state of a large number of identical independent atoms among all their possible
quantum states. This classical probability for some atom to be in some quantum state varies
with space and time: its variations have the same space and time scales as those of the electric
field. It varies spatially at distances which are very large with respect to the atomic scale.
This ensures the validity of the statistical treatment yielded by the use of the density matrix
formalism. The fact that the wavelength is very large with regard to the atomic scale also
allows the use of the electric dipolar approximation, that justifies equations (4) and (5).

3. The resolution of the perturbative scheme

The expansion (7) is imported into the equations (3)–(5), and the coefficient of each power of
ε equated. We denote the components of ρ by

ρpn =
(
ρ
p
n,a ρ

p
n,t

ρ
p
n,u ρ

p

n,b

)
. (10)
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Expression (5) for �P simply yields

Pp,s
n = N

(
ρpn,uµ

s + ρpn,t µ̄
s
)

(11)

for all n, p, and s = x, y, z.

3.1. Order 0

In addition, we implicitly assumed that ρp0 = 0 for any nonzero p. It is easily checked
that this condition is necessary, except eventually, for the coherences ρp0,t and ρ

p

0,u, if the
corresponding harmonic of the incident wave oscillates at the exact resonance frequency of
the atom pω = ±$. We assume that no such resonance exist in the present case.

3.2. Order 1

Because of the first order choice (9), the term of interest is p = 1. The Maxwell equation (3)
at order ε1 for this term yields

E
1,s
1 = −4π

β
P

1,s
1 for s = x, y

E
1,z
1 = −4πP 1,z

1

(12)

with β = 1 − k2c2

ω2 . The Schrödinger equation (6) shows that the corrections to the populations
at this order, ρ1

1,a and ρ1
1,b, are zero. The coherences are coupled with the electric field through

h̄ωρ1
1,t = −h̄$ρ1

1,t +
∑

s=x,y,z
µsE

1,s
1 . (13)

Making use of equation (12) in (13) and in the similar equation for ρ1
1,u, the following linear

system is obtained:

L
(
ρ1

1,t

ρ1
1,u

)
=
(
h̄ ($ + ω) + NQ NK

NK̄ h̄ ($− ω) + NQ

)(
ρ1

1,t

ρ1
1,u

)
=
(

0
0

)
(14)

where

K = 4π

(
1

β

(
µ2
x + µ2

y

)
+ µ2

z

)
(15)

Q = 4π

(
1

β

(|µx |2 + |µy |2
)

+ |µz|2
)
. (16)

Notice that
(
ρ1

1,t , ρ
1
1,u

) = (0, 0) solves equation (14). This yields a solution of the propagation
problem in which the atomic dipoles are not excited by the wave. This is the case when the
wave polarization is perpendicular to the direction of the polarization density defined by �µ
(assuming that the operator �µ, in the two-level model, describes transverse linear oscillations
of the atomic dipoles). Here we will only consider the waves that excite the atomic dipoles,
e.g. for which the coherences are not both zero. The corresponding dispersion relation takes
the form det(L) = 0, which yields

h̄2ω2 = (h̄$ + NQ)2 −N2KK̄. (17)

Then the solution can be written

ρ1
1 = f

(
0 −NK

h̄ ($ + ω) + NQ 0

)
(18)

�E1
1 = �e 1

1 f with: �e 1
1 = −N

(
θx/β

θy/β

θz

)
(19)
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where, for s = x, y, z

θs = 4π (µs(h̄ ($ + ω) + NQ)− µ̄sNK) . (20)

For other values ofp, the equations reduce to an analogous linear homogeneous system, whose
determinant is deduced from det L by replacing ω by pω, or when p = 0, replacing ω by 0
and β by 1 − c2/V 2. Thus all the ρp1 and all the �Ep

1 are zero, for p �= ±1. Notice that this is
necessarily true without any particular assumption for |p| > 1, while the same result for p = 0
is closely related to the scaling, in which we imposed a unique velocity for all harmonics of
the wave.

3.3. Order 2

Nonlinear terms appear at this order in the Schrödinger equation (6). They read∑
s=x,y,z

∑
q+r=p

E
q,s

1 [µs, ρ
r
1] (21)

and are a priori not zero for p = 0 and ±2. For p = 0, there are two terms in the sum, that are
Hermitian conjugates. Due to the fact that the commutator is an antisymmetric product, the
terms are antihermitic. But they are also real, and thus cancel each other. Only one nonlinear
term is left at this order:∑

s=x,y,z
E

1,s
1 [µs, ρ

1
1 ] = −2h̄ωNK(h̄ ($ + ω) + NQ)f 2

(
1 0
0 −1

)
. (22)

As usual and as mentioned above for the first order, the second harmonic is defined in a unique
way. A remarkable feature is that the corrections to the field and polarization density at this
order are zero ( �E2

2 = �0, �P 2
2 = �0), while the density matrix is not:

ρ2
2 = NK(h̄ ($ + ω) + NQ)f 2

(
1 0
0 −1

)
. (23)

The nonvanishing components of ρ2
2 are the populations (a and b components); while the

coherences ρ2
2,t and ρ2

2,u are zero, which implies the vanishing of the electric field. All other
harmonics (i.e. all terms but those corresponding to p = ±2 and ±1) are zero, due to the
absence of the nonlinear term. Justification is the same as at first order.

The fundamental term (p = 1), at order ε2, is treated as follows. The Maxwell equation (3)
gives a relation between �E1

2 and �P 1
2 analogous to (12) but involving the previous order:

E
1,s
2 = −4π

β
P

1,s
1 + ih̄N/θs∂τf for s = x, y

E
1,z
2 = −4πP 1,z

2

(24)

with

/ = −2c

h̄ωβ2V

(
V

c
(β − 1) +

kc

ω

)
. (25)

The corrections to the populations ρ1
2,a and ρ1

2,b are zero, and the coherences are related through

L
(
ρ1

2,t

ρ1
2,u

)
= ih̄

(
NK + N/

∑
s=x,y θsµs

(h̄ ($ + ω) + NQ) + N/
∑

s=x,y θsµ̄s

)
∂τf. (26)

(Notice that the index s takes the three values x, y or z in some cases, and only the two values
x and y in others.) The solvability condition follows, it gives the value of the velocity V :

V = kc2

ω

4πN
[
2h̄$(|µx |2 + |µy |2)− 4πN

(
σ 2
x + σ 2

y + 2σ 2
z /β

)]
h̄2
(
k2c2 − ω2

)− k2c2

ω2 4πN
[
2h̄$(|µx |2 + |µy |2)− 4πN

(
σ 2
x + σ 2

y + 2σ 2
z /β

)] . (27)
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The σj are defined by

�σ = �µ ∧ �µ. (28)

It is checked by direct computation that V = dω
dk . The complete solution at this order then

reads

ρ1
2 =

(
0 −NKg

(h̄ ($ + ω) + NQ)g + ih̄2∂τf 0

)
(29)

�E1
2 = −N

(
θx/β

θy/β

θz

)
g + ih̄N

(
/θx − 4πµx2/β
/θy − 4πµy2/β

−4πµz2

)
∂τf (30)

where 2 reads

2 = 1 +
∑
s=y,z

θsµs//K. (31)

3.4. Order 3

The Maxwell equations at order ε3, for the fundamental p = 1, yield, for s = x, y:

E
1,s
3 = −4π

β
P

1,s
3 + ih̄N/θs∂τ g +

2ikc2

β2ω2
Nθs∂ζ f + Us∂

2
τ f

E
1,z
3 = −4πP 1,z

3

(32)

with, for s = x, y:

Us = 2Nh̄

βω

(
/θs +

(
1 − 1

β

)
4πµs2

)
+

1

βω2

(
1 − 1

β

)
Nθs

−2h̄kc2N

ω2βV

(
/θs − 4πµs2

β

)
+

c2Nθs

ω2β2V 2
. (33)

The Schrödinger equation (6) involves only one nonlinear term, which reads∑
s=x,y,z

E
−1,s
1

[
µs, ρ

2
2

] = ηf |f |2
(

0 νt
νu 0

)
(34)

with

η = −2NK(h̄ ($ + ω) + NQ) (35)

νt = h̄($− ω)(h̄ ($ + ω) + NQ) (36)

νu = h̄ ($ + ω)NK̄. (37)

The coherences obey the system

L
(
ρ1

3,t

ρ1
3,u

)
=
(
Wt

Wu

)
(38)

where the right-hand side member can be written, for j = t , u:

Wj = W
g

j ∂τg + Wp

j ∂ζ f + Wd
j ∂

2
τ f + Wnl

j f |f |2. (39)

The solvability condition of system equation (38) reads∣∣∣∣Wt NK

Wu h̄ ($− ω) + NQ

∣∣∣∣ = 0. (40)

According to (39), it can be expanded as follows:

R∂τg + iA∂ζf + B∂2
τ f + Cf |f |2 = 0 (41)
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with

R =
∣∣∣∣Wg

t NK

W
g
u h̄ ($− ω) + NQ

∣∣∣∣ (42)

and so on. We notice that the solvability condition of the system (26) at order 2, that gives V ,
is exactly R = 0, thus g vanishes from the equation. It is easily checked that A, B and C are
real constants, and condition (41) becomes the NLS equation

iA∂ζf + B∂2
τ f + Cf |f |2 = 0. (43)

4. The coefficients of the NLS equation

4.1. Preliminary

The coefficients of the NLS equation (43) are defined by, for j = p, d, nl:

Xj =
∣∣∣∣Wj

t NK

W
j
u h̄ ($− ω) + NQ

∣∣∣∣ (44)

with Xp = iA, Xd = B, Xnl = C. A comparison with the coefficients given by other theories
necessitates the presentation of equation (43) under some standard form (see e.g. [8], 6.5.32).
This form reads

i∂ζE − 1
2k2∂

2
τ E + γ E |E|2 = 0. (45)

The variable used in (45) is some component E of the electric field amplitude, so that �E1
1 = E �u,

where �u is a unitary polarization vector. Thus E = ∣∣∣∣�e 1
1

∣∣∣∣ f . The coefficients are identified as
follows:

−1

2
k2 = B

A
and γ = C

A
∣∣∣∣�e 1

1

∣∣∣∣2 . (46)

The remainder of the paper is devoted to the comparison between the values of k2 and γ
obtained in [8] and in this paper, respectively. Our purpose is to compare our results with the
most commonly admitted theory. Therefore, we restrict our references to this often quoted
book, despite the fact that many others exist including a lot of more recent works. The explicit
expressions for A and

∣∣∣∣�e 1
1

∣∣∣∣ are needed. The former follows from (44), it reads

iA = c2

∣∣∣∣∣∣∣∣∣

2ik

β2ω2
N
∑
s=x,y

θsµs NK

2ik

β2ω2
N
∑
s=x,y

θsµ̄s h̄ ($− ω) + NQ

∣∣∣∣∣∣∣∣∣
(47)

and thus reduces to

A = 16πkc2N2K

β2ω2

(
2πN

(
σ 2
x + σ 2

y +
2σ 2

z

β

)
− h̄$

(|µx |2 + |µy |2
))

(48)

�e 1
1 is given by (19), its squared norm reads

∣∣∣∣�e 1
1

∣∣∣∣2 = N2

(
1

β2

(
|θx |2 +

∣∣θy∣∣2) + |θz|2
)
. (49)
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4.2. The dispersion coefficient

Note first that the dispersion relation (17) exactly coincides with that found from the linear

susceptibility
↔
χ
(1)

(ω) computed in [8], for the density matrix description of a two-level

model, as here. An expression for
↔
χ
(1)
(ω) is given by formula 3.5.15 in [8]. For a two-level

Hamiltonian, and using the present notations, it reduces to

χ
(1)
ij (ω) = N

h̄

(
µiµ̄j

$− ω
+
µ̄iµj

$ + ω

)
. (50)

Seeking for a monochromatic plane wave solution of the Maxwell equations (3) with

�P =↔
χ
(1)
(ω) · �E (51)

a dispersion relation is obtained, that exactly coincides with (17). The derivative dω
dk is computed

from this dispersion relation: the obtained value of the group velocity exactly coincides with
that of expression (27).

The following point is to compute explicitly coefficient B of the dispersion term in
equation (43). It reads

B =

∣∣∣∣∣∣∣

∑
s=x,y

µsUs NK∑
s=x,y

µ̄sUs − h̄2 2 h̄ ($− ω) + NQ

∣∣∣∣∣∣∣ . (52)

After some computation, we get

B = B2 h̄
2 2 + B ′ (53)

with

B2 = NK − 4πN/
(
h̄($− ω)(µ2

x + µ2
y) + 4πNµz(µyσx − µxσy)

)
(54)

/ is defined by equation (25).

B ′ = c24πN2K

ω2β2V 2

(
1 +

V 2

c2
(β − 1)− 2

V

c
β/h̄ω

(
kc

ω
− V

c

))

×
(

4πN

(
σ 2
x + σ 2

y +
2σ 2

z

β

)
− 2h̄$

(|µx |2 + |µy |2
))

. (55)

It can be checked by formal and numerical computation that

B

A
= −1

2

d2k

dω2
. (56)

Thus the expression of the dispersion coefficient found using the present multiscale expansion
coincides with the value given in the literature, that is usually derived using the linear dispersion
theory. Thus, with respect to its linear part, the present computation agrees perfectly with the
already known results.

4.3. The nonlinear coefficient

The coefficient C of the nonlinear term in equation (43) reads

C =
∣∣∣∣−ηνt NK

ηνu h̄ ($− ω) + NQ

∣∣∣∣ . (57)

It reduces to

C = 4N3K2K̄h̄$(h̄ ($ + ω) + NQ). (58)
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It is useful, in order to give some physical interpretation of C, to simplify this expression,
restricting it to some more specific physical situation. We assume that the polarization operator
�µ, in the two-level model, describes oscillations of the molecular dipole along some direction,
making an angle α with the propagation direction z. Thus

�µ =
( cosα

0
sin α

)
µ. (59)

The quantities involved in the computation of the nonlinear coefficient γ then reduce to

C = 4(4π)3N3µ4µ̄2

β4
h̄$

(
cos2 α + β sin2 α

)3 [
βh̄ ($ + ω) + 4πNµµ̄

(
cos2 α + β sin2 α

)]
(60)

A = −4(4π)2N2µ3µ̄h̄$kc2

β3ω2
cos2 α

(
cos2 α + β sin2 α

)
(61)

∣∣∣∣�e 1
1

∣∣∣∣2 = (4π)2N2µµ̄h̄2 ($ + ω)2

β2

(
cos2 α + β2 sin2 α

)
(62)

and the nonlinear coefficient itself reads

γ = −βω2
(
cos2 α + β sin2 α

)2 (
βh̄ ($ + ω) + 4πNµµ̄

(
cos2 α + β sin2 α

))
4πc2h̄2kN ($ + ω)2 cos2 α

(
cos2 α + β2 sin2 α

) . (63)

The dispersion relation can be explicitly solved:

k = ω

c

√
ω2 − ω2

2

ω2 − ω2
1

(64)

where

ω2
1 = $

(
$ +

8πNµµ̄

h̄
sin2 α

)
(65)

ω2
2 = $

(
$ +

8πNµµ̄

h̄

)
. (66)

It is seen that the wave cannot propagate if ω1 � ω � ω2. The nonlinear coefficient then reads

γ = −8πNµ2µ̄2ω$
(
ω2 −$2

)2
cos4 α

h̄3c

√(
ω2 − ω2

1

)3 (
ω2 − ω2

2

) [(
ω2 − ω2

1

)2 − (
$2 − ω2

1

) (
ω2

2 − ω2
1

)] . (67)

The nonlinear coefficient presents not only resonance terms for the linear resonance frequency
ω1, but also a weaker divergence for the frequency ω2 at which the wavevector k is zero.
The resonance frequency ω1 depends on the propagation direction. If it is assumed that the
atomic dipoles are excited perpendicular to the propagation direction (α = 0), then ω1 = $

is the frequency corresponding to the difference between the atomic levels, and the nonlinear
coefficient reduces to

γ = −8πNµ2µ̄2ω$

h̄3c

√(
ω2 −$2

)3 (
ω2 − ω2

2

) . (68)
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4.4. The case of a circular polarization

Consider the particular situation whereµx = µ,µy = iµ andµz = 0. This dipolar momentum
can be excited by circularly polarized light (indeed, when µz = 0, the polarization vector �e1

1
given by equation (19) is collinear to the dipolar momentum �µ) therefore this situation will
be referred to as that of a circular polarization. It appears from (15) that the quantity K

vanishes, thus so does the nonlinear coefficient C in the NLS equation (41). Care must be
taken before we conclude. Indeed, the other coefficientsA and B of equation (41) also vanish:
the computation is in fact not completely valid in this case. The special case of the circular
polarization can be considered as a limiting case of elliptic polarization. Computation shows
that the corresponding limit of the ratio C/A is zero. This way we can conclude that the Kerr
effect does not exist in this situation. However, it is preferable to check this statement by direct
consideration of the equations. We must consider the equations obtained at first order for the
density matrix: the equation (14) for the term ρ1

1 . For a circular polarization, with K = 0, the
matrix of the linear system (14) is diagonal. The solution is either

ρ1
1 =

(
0 ρ1

1,t

0 0

)
if h̄ ($ + ω) + NQ = 0 (69)

or

ρ1
1 =

(
0 0

ρ1
1,u 0

)
if h̄ ($− ω) + NQ = 0. (70)

Note that expression (19), (20) for the polarization vector is valid only for the latter solution.
Then we pursue the resolution of the perturbative scheme. There is only one nonlinear term
appearing in the Schrödinger equation (6) at order 2, it is given by equation (22). According
to (12) and (11), the electric field components can be written

E
1,s
1 = −4πN

β

(
ρ1

1,uµs + ρ1
1,t µ̄s

)
. (71)

The commutator involved by equation (22) reads

[
µs, ρ

1
1

] = (
µsρ

1
1,u − µ̄sρ

1
1,t

) ( 1 0
0 −1

)
. (72)

And thus the nonlinear term reads∑
s=x,y,z

E
1,s
1

[
µs, ρ

1
1

] = −4πN

β

((
µx

2 + µy
2
)
(ρ1

1,u)
2 − (

µx2 + µy2
)
(ρ1

1,t )
2
)( 1 0

0 −1

)
= 0.

(73)

Thus ρ2
2 vanishes. Because the zero harmonic of the density, and both the zero and second

harmonics of the field already vanish at this order, there is no longer a nonlinear term at order
2. Therefore there is no self-interaction at order 3, because the nonlinearity is quadratic. This
shows that the evolution equation derived at order 3 will be linear. In other words, the Kerr
effect does not arise for circular polarizations, in the frame of a two-level model.

5. Comparison with the standard theory

5.1. A simple case

In order to compare the result of this paper to previous calculations, we can compute
the nonlinear coefficient γ by means of the nonlinear susceptibilities. According to [8]
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(equations (6.5.31) and (4.1.19)), the nonlinear coefficient γ is related to the nonlinear
susceptibility χ(3) = χ(3)(ω = ω + ω − ω) through

γ = 6ωπ

nc
χ(3) (74)

where n is the linear refractive index. χ(3) can be computed from formula (3.7.14) of [8]. We
rewrite down this formula with slight modifications in the notations, as follows:

χ(3)(ωp + ωq + ωr, ωr, ωq, ωp) = PI χ
(3)′(ωp + ωq + ωr, ωr, ωq, ωp) (75)

where PI is the averaging operator on the permutations of the indices (p, q, r), and
χ(3)′(ωr, ωq, ωp) is a primitive expression of the susceptibility, that does not possess the
required symmetry properties. It reads

χ
(3)′
kjih(ωt , ωr, ωq, ωp) = N

h̄3

∑
νnml

ρ
(0)
ll

×
{

µklνµ
j
νnµ

i
nmµ

h
ml[

ωνl − ωt
] [
ωnl − ωp − ωq

] [
ωml − ωp

]
+

µhlνµ
k
νnµ

j
nmµ

i
ml[

ωnν − ωt
] [
ωmν − ωp − ωq

] [
ωνl + ωp

]
+

µilνµ
k
νnµ

j
nmµ

h
ml[

ωnν − ωt
] [
ωνm + ωp + ωq

] [
ωml − ωp

]
+

µhlνµ
i
νnµ

k
nmµ

j

ml[
ωmn − ωt

] [
ωnl + ωp + ωq

] [
ωνl + ωp

]
+

µ
j

lνµ
k
νnµ

i
nmµ

h
ml[

ωνn + ωt
] [
ωnl − ωp − ωq

] [
ωml − ωp

]
+

µhlνµ
j
νnµ

k
nmµ

i
ml[

ωnm + ωt
] [
ωmν − ωp − ωq

] [
ωνl + ωp

]
+

µilνµ
j
νnµ

k
nmµ

h
ml[

ωnm + ωt
] [
ωνm + ωp + ωq

] [
ωml − ωp

]
+

µhlνµ
i
νnµ

j
nmµ

k
ml[

ωml + ωt
] [
ωnl + ωp + ωq

] [
ωνl + ωp

]
}
. (76)

We have set ωt = ωp + ωq + ωr for simplicity. The matrix
(
ρ
(0)
lm

)
is the same as denoted ρ0

above, and the matrix
(
µ
j

lm

)
is the same as µj defined by (2). Relative to the original formula,

we have dropped the imaginary terms ±iγlm in the denominators. Indeed, these terms account
for the damping, which is neglected in the present model, and therefore must be taken as zero
for the comparison.

When considering the Kerr effect, or self-interaction of one wave, formulas (75), (76)
present a divergence. Therefore we write

χ
(3)
kj ih(ω, ω, ω,−ω) = lim

δω→0
χ
(3)
kj ih(ω + δω, ω, ω,−ω + δω). (77)

The terms χ(3)′
kjih(ω + δω, ω,−ω + δω, ω) and χ(3)′

kjih(ω + δω, ω, ω,−ω + δω) cancel each other
and finally

χ
(3)
kj ih(ω, ω, ω,−ω) = N

3ωh̄3

[
µhµ̄kµj µ̄i

($ + ω)2
− µkµ̄jµiµ̄h

($− ω)2
+
µhµ̄iµkµ̄j − µiµ̄kµj µ̄h

$2 − ω2

]
. (78)
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Consider first a polarization operator �µ = (µ, 0, 0) parallel to the x-axis. This means
that the transition considered in the two-level model corresponds to oscillations of the charge
along the x-axis, and can be excited by light linearly polarized along the x direction. Then the
only component of χ(3) to be considered is χ(3)

xxxx , computed from equation (78):

χ(3)
xxxx(ω, ω, ω,−ω) = χ

(3)
0 = −4

3

N

h̄3

$|µ|4(
ω2 −$2

)2 . (79)

Then making use of (74), we find exactly the same value of γ as in (68). Thus the present
theory completely agrees with previous calculations in this simple case.

5.2. An anisotropic situation

Two other situations will be considered. First, we assume that

�µ =
(
µ cosα

0
µ sin α

)
. (80)

This corresponds to an anisotropic situation, where the charge oscillations taken into account
by the two-level model can only be excited in a fixed direction that makes an angle α with the
transverse direction x. The exciting light is still linearly polarized. The polarization is directed
by the vector �e1

1 given by equation (19), with

�e1
1 ∝ �u =

( cosα/(1 − n2)

0
sin α

)
. (81)

We assume that the electric field �E takes the form

�E = �E(ω)eiϕ + c.c. = Eeiϕ �u
||�u|| + c.c. (82)

The component at frequency ω and along the j -axis of the nonlinear polarization �Pnl writes,
according to [8], equation (4.1.5):

P
j

nl(ω) = 3
(
χ(3)(ω, ω, ω,−ω) · �E(ω) �E(ω) �E(−ω)

)
j

= 3
E |E|2
||�u||3

{
χ
(3)
jxxxu

3
x +

(
χ
(3)
jxxz + χ(3)

jxzx + χ(3)
jzxx

)
u2
xuz

+
(
χ
(3)
jxzz + χ(3)

jzxz + χ(3)
jzzx

)
uxu

2
z + χ(3)

jxxxu
3
z

}
. (83)

On the other hand, making use of the expression (80) of µ in the expression (78) of χ(3) yields

P
j

nl(ω) = 3
E |E|2
||�u||3 χ

(3)
0

(
cos2 α

1 − n2
+ sin2 α

)3
( cosα

0
sin α

)
(84)

where χ(3)
0 is the value of χ(3)

xxxx obtained when α = 0 (cf equation (79)). The first observation
is that �Pnl(ω) is not collinear to �E(ω). Thus equation (6.5.32) of [8] cannot be used directly.
A naive generalization of this equation could take the form

i∂ζE
x − k′′

2
∂2
τ E

x +
2πω

nc
P x
nl = 0

i∂ζE
z − k′′

2
∂2
τ E

z +
2πω

nc
P z
nl = 0.

(85)
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Together with the value (84) of �Pnl , this yields two different NLS equations for a single wave
amplitude E , instead of a single one according to the result of this paper. When considering
two independent polarizations, a set of two coupled NLS equations is a well known model, that
accounts for their interaction. But here Ex and Ez are not independent. Thus the nonlinear
susceptibilities seem to fail to describe this particular situation. Although it is not correct from
the mathematical point of view, we can solve this problem by simply dropping one of the two
equations in (85). This yields a single NLS equations for the amplitude E , whose nonlinear
coefficient reads as follows. If we keep the second equation, the nonlinear coefficient is γz,
such that

γz = 6ωπ

nc
χ
(3)
0

(
cos2 α
1−n2 + sin2 α

)3

(
cos2 α
(1−n2)2

+ sin2 α
) . (86)

If we keep the first equation, we get a different coefficient, γx , with

γx = γz(1 − n2). (87)

Because γx tends to the value of γ given by (74) as α tends to zero, and γz does not, the former
is likely a better approximate value of the coefficient. Using the dispersion relation (64), we
can rewrite the expression for γx . We have the identities

cos2 α + (1 − n2) sin2 α = ω2 −$2

ω2 − ω2
1

cos2 α (88)

cos2 α + (1 − n2)2 sin2 α = cos2 α

(ω2 − ω2
1)

2

[(
ω2 − ω2

1

)2
+
(
ω2

2 − ω2
1

) (
ω2

1 −$2
)]
. (89)

Thus γx takes the form

γx = 8πω$N |µ|4
ch̄3

(
ω2 −$2

)
cos4 α√(

ω2 − ω2
2

) (
ω2 − ω2

1

) [(
ω2 − ω2

1

)2
+
(
ω2

2 − ω2
1

) (
ω2

1 −$2
)] . (90)

This expression can be compared to the expression (67) of the nonlinear coefficient γ found by
the multiscale approach. Both expressions are comparable, but not identical: the resonance at
ω = ω1 is much weaker in the formula computed from the susceptibilities: γx ∝ (ω − ω1)

−1/2,
instead of (ω − ω1)

−3/2 in (67). In the same way, the coefficient γ vanishes as (ω −$)2 in (67),
while γx is proportional to (ω −$)1 only.

The origin of the discrepancy seems to stem from the fact that the computation of the
nonlinear susceptibilities does not take the propagation into account. Indeed, no mention
of a propagation direction, not even of a space variable appears in the derivation of the
susceptibilities [8]. But the propagation affects the nonlinear effect. The shift of the
resonance frequency can be recovered when determining the dispersion relation from the linear
susceptibility. The use of the obtained polarization vector partly corrects the expression for γx ,
but not completely. The considered situation, of a two-level model involving a non-transverse
polarization with regard to the propagation direction, can be considered as the most simple
model that gives an account of anisotropy. It appears that in such a situation, the nonlinear
susceptibilities do not yield the nonlinear evolution equation in a way completely coherent from
the mathematical point of view, while the multiscale expansion approach is mathematically
totally coherent, and that the derived nonlinear coefficient can be erroneous. The same kind
of discrepancy between the results obtained by the two approaches can be expected to arise
when considering light propagation in an anisotropic medium in a more realistic way.
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5.3. Circular polarization

Now we choose µx = µ, µy = iµ, and µz = 0. This corresponds to a transition which can
only been excited by a circularly polarized wave. This is, for example, the case for the transition
between the states 1s and 2p,m = +1 of an hydrogenoid atom, wherem is the quantum number
that refers to the z-component of the orbital kinetic momentum. The dipolar momentum is
�µ = −e�x, where e is the absolute value of the electronic charge, and �x = (x, y, z). The
matrix of the �µ components in the subspace of the space of the atomics states generated by
the two states 1s and 2p, m = +1, can be computed from the explicit expressions for the
atomic orbitals, which can be found in any elementary book about quantum mechanics. These
matrices read

µx = 128
243a0e

(
0 1
1 0

)
µy = 128

243a0e

(
0 i
−i 0

)
µz =

(
0 0
0 0

)
. (91)

This corresponds to our assumption (a0 is the Bohr radius). This computation is not intended to
prove that the considered two-level model will actually describe the behaviour of hydrogenoid
atoms in some conveniently polarized light, but only that the above assumption on �µ has some
physical relevance.

In this case the electric wave field reads

�E = E√
2

( 1
i
0

)
+ c.c. (92)

The nonlinear polarization reads then, in a way analogous to (83):

P x
nl(ω) = 3

2
√

2
E |E|2 {χ(3)

xxxx − iχ(3)
xxxy + i

(
χ(3)
xxyx + χ(3)

xyxx

)
+
(
χ(3)
xxyy + χ(3)

xyxy

)− χ(3)
xyyx + iχ(3)

xyyy

}
(93)

P
y

nl(ω) = iP x
nl(ω). (94)

The χ(3) components are computed from (78), and then P x
nl(ω) is computed explicitly. The

vectorial NLS equation (85) yields a single NLS equation for the amplitude E , with the nonlinear
coefficient

γ = 8π

nch̄3

N |µ|4
($2 − ω2)

. (95)

Thus the nonlinear coefficient γ computed from the nonlinear susceptibilities is not zero, while
the multiscale approach has shown that the Kerr effect does not occur in this case. The reason
is, that the approach that uses nonlinear susceptibilities decomposes the circular polarization
into the sum of two linear polarizations, computes a nonlinear effect for each component, and
again combines the results. Such a method uses a summability property that is properly linear,
and is not true for a nonlinear problem.

6. Conclusion

A NLS equation, describing the evolution of some temporally localized pulse of some plane
wave in a nonlinear optical medium, has been derived directly from a quantum mechanical
model. The Kerr effect is mainly due to oscillations of the populations of the two levels at
the second-harmonic frequency, while the oscillations of the wave field and of the polarization
density at the second harmonic frequency are negligible.

The linear properties (the dispersion relation, the values of the group velocity and of the
dispersion coefficient in the NLS equation) have been found again, in complete accordance
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with other computations. The nonlinear coefficient in the NLS equation completely agrees with
the result given by less rigorous theories, in the simple case of a linearly polarized transverse
wave. But in more complicated situations that yield a simplified anisotropic model, there
is an appreciable discrepancy. This is, due to the fact that the computation of the nonlinear
susceptibilities does not make any reference to the propagation direction. The shift of the
linear resonance that occurs when the atomic dipoles are not perpendicular to the propagation
direction is therefore not correctly accounted for by the nonlinear susceptibilities, and the
strength of the corresponding resonance is under-evaluated. In contrast, the viewpoint adopted
by this paper gives a correct account of the propagation. When considering a transition
involving a circular polarization, the two approaches disagree totally. Indeed, the multiscale
expansion shows that no self-interaction occurs, while the nonlinear polarization computed
with the help of the nonlinear susceptibilities is not zero.

Although this paper is restricted to the academic problem of a two-level atom, it will be
possible to generalize this approach to more realistic situations. We have thus given a way to
derive the equations governing light propagation over relatively large distances in a nonlinear
medium. The nonlinear coefficient obtained may differ appreciably from the standard values.
The latter are only valid for the propagation through very thin samples, because they are derived
neglecting retardation.
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